Skip to main content

Advertisement

Log in

Use of nanofillers in wood coatings: a scientific review

  • Review Article
  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Wood has been used for thousands of years and remains an important material in the construction industry, most often protected with coatings. Development of nanotechnology allows further improvements or new performance properties to be achieved in wood coatings. Increased UV protection with nanometal oxides that allow wood texture to remain seen and higher resilience to scratch and abrasion with use of different nanoparticle shapes are some of the applications that are reviewed here. A variety of possible applications together with a high level of improvements, alongside commercial factors like a low level of loading, have already established nanoparticles in some areas of wood coatings. This article is a comprehensive scientific review of the published work in the use of nanofillers in wood coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wiemann, MC, “Characteristics and Availability of Commercially Important Woods.” In: Ross, RJ (ed.) Wood Handbook: Wood As an Engineering Material. US Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, 2010

    Google Scholar 

  2. Marathe, B, Kantak, A, “Nano Additives: A Review.” Paintindia, 58 (7) 113–132 (2008)

    Google Scholar 

  3. Fufa, SM, Jelle, BP, Hovde, PJ, Rørvik, PM, “Impregnated Wooden Claddings and the Influence of Nanoparticles on the Weathering Performance.” Wood Mater. Sci. Eng., 7 (4) 186–195 (2012)

    Google Scholar 

  4. Rong, MZ, Zhang, MQ, Ruan, WH, “Surface Modification of Nanoscale Fillers for Improving Properties of Polymer Nanocomposites: A Review.” Mater. Sci. Technol., 22 (7) 787–796 (2006)

    Google Scholar 

  5. McKay, RB, Technological Applications of Dispersions. Marcel Dekker, New York, 1994

    Google Scholar 

  6. Müller, F, Peukert, W, Polke, R, Stenger, F, “Dispersing Nanoparticles in Liquids.” Int. J. Miner. Process., 74 S31–S41 (2004)

    Google Scholar 

  7. Wang, S, Cheng, Q, “A Novel Process to Isolate Fibrils from Cellulose Fibers by High-Intensity Ultrasonication, Part 1: Process Optimization.” J. Appl. Polym. Sci., 113 (2) 1270–1275 (2009)

    Google Scholar 

  8. Wittmar, A, Ulbricht, M, “Dispersions of Various Titania Nanoparticles in Two Different Ionic Liquids.” Ind. Eng. Chem. Res., 51 (25) 8425–8433 (2012)

    Google Scholar 

  9. Schaefer, DW, Justice, RS, “How Nano are Nanocomposites?” Macromolecules, 40 (24) 8501–8517 (2007)

    Google Scholar 

  10. Ahamed, M, Alsalhi, MS, Siddiqui, MK, “Silver Nanoparticle Applications and Human Health.” Clin. Chim. Acta, 411 (23–24) 1841–1848 (2010)

    Google Scholar 

  11. Bundschuh, M, Seitz, F, Rosenfeldt, RR, Schulz, R, “Titanium Dioxide Nanoparticles Increase Sensitivity in the Next Generation of the Water Flea Daphnia magna.” PLoS ONE, 7 (11) e48956 (2012)

    Google Scholar 

  12. Zayat, M, Garcia-Parejo, P, Levy, D, “Preventing UV-Light Damage of Light Sensitive Materials Using a Highly Protective UV-Absorbing Coating.” Chem. Soc. Rev., 36 (8) 1270–1281 (2007)

    Google Scholar 

  13. de Meijer, M, “Review on the Durability of Exterior Wood Coatings with Reduced VOC-Content.” Prog. Org. Coat., 43 (4) 217–225 (2001)

    Google Scholar 

  14. Evans, PD, Thay, PD, Schmalzl, KJ, “Degradation of Wood Surfaces During Natural Weathering. Effects on Lignin and Cellulose and on the Adhesion of Acrylic Latex Primers.” Wood Sci. Technol., 30 (6) 411–422 (1996)

    Google Scholar 

  15. Auclair, N, Bernard, R, Vincent, B, Pierre, B, “Improvement of Photoprotection of Wood Coatings by Using Inorganic Nanoparticles as Ultraviolet Absorbers.” For. Prod. J., 61 (1) 20–27 (2011)

    Google Scholar 

  16. Weichelt, F, Emmler, R, Flyunt, R, Beyer, E, Buchmeiser, MR, Beyer, M, “ZnO-Based UV Nanocomposites for Wood Coatings in Outdoor Applications.” Macromol. Mater. Eng., 295 130–136 (2010)

    Google Scholar 

  17. Schaller, C, Rogez, D, “New Approaches in Wood Coating Stabilization.” J. Coat. Technol. Res., 4 (4) 401–409 (2007)

    Google Scholar 

  18. Classen, A, Rentschler, T, Faoro, G, Bechtold, K, “Colourless Protection: Efficient Stabiliser Packages in Waterborne Transparent Wood Coatings” Eur. Coat. J., 12, 40, 42–45 (2006)

  19. Zhang, LW, Fu, HB, Zhu, YF, “Efficient TiO2 Photocatalysts from Surface Hybridization of TiO2 Particles with Graphite-Like Carbon.” Adv. Funct. Mater., 18 (15) 2180–2189 (2008)

    Google Scholar 

  20. Cauda, V, Rossana, G, Samuele, P, Stefano, S, Giancarlo, C, Ignazio, R, Alessandro, C, “Nanostructured ZnO Materials: Synthesis, Properties and Applications.” Handbook of Nanomaterials Properties, pp. 137–177. Springer, Berlin, 2014

  21. Cammarano, R, Butler, L, Lee, D, McCormick, PG, Tsuzuki, T, “Use of Nanotechnology in Producing Protective Wood Coatings.” Surf. Coat. Aust., 41 (1&2) 14–21 (2004)

    Google Scholar 

  22. Allen, NS, Edge, M, Ortega, A, Sandoval, G, Liauw, CM, Verran, J, Stratton, J, McIntyre, RB, “Degradation and Stabilisation of Polymers and Coatings: Nano Versus Pigmentary Titania Particles.” Polym. Degrad. Stab., 85 (3) 927–946 (2004)

    Google Scholar 

  23. Siddiquey, IA, Furusawa, T, Sato, M, Honda, K, Suzuki, N, “Control of the Photocatalytic Activity of TiO2 Nanoparticles by Silica Coating with Polydiethoxysiloxane.” Dyes Pigment., 76 (3) 754–759 (2008)

    Google Scholar 

  24. Ukaji, E, Furusawa, T, Sato, M, Suzuki, N, “The Effect of Surface Modification with Silane Coupling Agent on Suppressing the Photo-catalytic Activity of Fine TiO2 Particles as Inorganic UV Filter.” Appl. Surf. Sci., 254 (2) 563–569 (2007)

    Google Scholar 

  25. Zhang, Y, Wu, Y, Chen, M, Wu, L, “Fabrication Method of TiO2–SiO2 Hybrid Capsules and Their UV-Protective Property.” Colloid. Surf. A, 353 (2–3) 216–225 (2010)

    Google Scholar 

  26. Lee, MH, Patil, UM, Kochuveedu, ST, Lee, CS, Kim, DH, “The Effect of SiO2 Shell on the Suppression of Photocatalytic Activity of TiO2 and ZnO Nanoparticles.” Bull. Korean Chem. Soc., 33 (11) 3767–3771 (2012)

    Google Scholar 

  27. Lee, HS, Koo, SM, Yoo, JW, “TiO2–SiO2 Nanoparticles for Suppressing Photocatalytic Activities and Improving Hydrophilicity.” J. Ceram. Process. Res., 13 (SPL. ISS.2) S300–S303 (2012)

    Google Scholar 

  28. Saadat-Monfared, A, Mohseni, M, Tabatabaei, MH, “Polyurethane Nanocomposite Films Containing Nano-cerium Oxide as UV Absorber. Part 1. Static and Dynamic Light Scattering, Small Angle Neutron Scattering and Optical Studies.” Colloid. Surf. A, 408 64–70 (2012)

    Google Scholar 

  29. Allen, NS, Edge, M, Ortega, A, Liauw, CM, Stratton, J, McIntyre, RB, “Behaviour of Nanoparticle (Ultrafine) Titanium Dioxide Pigments and Stabilisers on the Photooxidative Stability of Water Based Acrylic and Isocyanate Based Acrylic Coatings.” Polym. Degrad. Stab., 78 (3) 467–478 (2002)

    Google Scholar 

  30. Gu, X, Chen, G, Zhao, M, Watson, SS, Stutzman, PE, Nguyen, T, Chin, JW, Martin, JW, “Role of Nanoparticles in Life Cycle of ZnO/Polyurethane Nanocomposites.” Nanotech 2010, Anaheim, CA, vol. 1, pp. 709–712, June 2010

  31. Gu, X, Chen, G, Zhao, M, Watson, SS, Nguyen, T, Chin, JW, Martin, JW, “Critical Role of Particle/Polymer Interface in Photostability of Nano-filled Polymeric Coatings.” J. Coat. Technol. Res., 9 (3) 251–267 (2011)

    Google Scholar 

  32. Godnjavec, J, Znoj, B, Vince, J, Steinbucher, M, Znidarsic, A, Venturini, P, “Stabilization of Rutile TiO2 Nanoparticles with Glymo in Polyacrylic Clear Coating.” Materiali in Tehnologije, 46 (1) 19–24 (2012)

    Google Scholar 

  33. Godnjavec, J, Znoj, B, Veronovski, N, Venturini, P, “Polyhedral Oligomeric Silsesquioxanes as Titanium Dioxide Surface Modifiers for Transparent Acrylic UV Blocking Hybrid Coating.” Prog. Org. Coat., 74 (4) 654–659 (2012)

    Google Scholar 

  34. Veronovski, N, Verhovšek, D, Godnjavec, J, “The Influence of Surface-Treated Nano-TiO2 (Rutile) Incorporation in Water-Based Acrylic Coatings on Wood Protection.” Wood Sci. Technol., 47 (2) 317–328 (2012)

    Google Scholar 

  35. Saha, S, Kocaefe, D, Krause, C, Larouche, T, “Effect of Titania and Zinc Oxide Particles on Acrylic Polyurethane Coating Performance.” Prog. Org. Coat., 70 (4) 170–177 (2011)

    Google Scholar 

  36. Saha, S, Kocaefe, D, Boluk, Y, Pichette, A, “Surface Degradation of CeO2 Stabilized Acrylic Polyurethane Coated Thermally Treated Jack Pine During Accelerated Weathering.” Appl. Surf. Sci., 276 86–94 (2013)

    Google Scholar 

  37. Cristea, M, Riedl, B, Blanchet, P, “Enhancing the Performance of Exterior Waterborne Coatings for Wood by Inorganic Nanosized UV Absorbers.” Prog. Org. Coat., 69 (4) 432–441 (2010)

    Google Scholar 

  38. Cristea, MV, Riedl, B, Blanchet, P, “Effect of Addition of Nanosized UV Absorbers on the Physico-mechanical and Thermal Properties of an Exterior Waterborne Stain for Wood.” Prog. Org. Coat., 72 (4) 755–762 (2011)

    Google Scholar 

  39. Vlad-Cristea, M, Riedl, B, Blanchet, P, Jimenez-Pique, E, “Nanocharacterization Techniques for Investigating the Durability of Wood Coatings.” Eur. Polym. J., 48 (3) 441–453 (2012)

    Google Scholar 

  40. Jalili, MM, Moradian, S, Dastmalchian, H, Karbasi, A, “Investigating the Variations in Properties of 2-Pack Polyurethane Clear Coat Through Separate Incorporation of Hydrophilic and Hydrophobic Nano-silica.” Prog. Org. Coat., 59 (1) 81–87 (2007)

    Google Scholar 

  41. Zhou, SX, Wu, LM, Sun, J, Shen, WD, “The Change of the Properties of Acrylic-Based Polyurethane Via Addition of Nano-silica.” Prog. Org. Coat., 45 (1) 33–42 (2002)

    Google Scholar 

  42. Aloui, F, Ahajji, A, Irmouli, Y, George, B, Charrier, B, Merlin, A, “Inorganic UV Absorbers for the Photostabilisation of Wood-Clearcoating Systems: Comparison with Organic UV Absorbers.” Appl. Surf. Sci., 253 (8) 3737–3745 (2007)

    Google Scholar 

  43. Forsthuber, B, Schaller, C, Grüll, G, “Evaluation of the Photo Stabilising Efficiency of Clear Coatings Comprising Organic UV Absorbers and Mineral UV Screeners on Wood Surfaces.” Wood Sci. Technol., 47 (2) 281–297 (2013)

    Google Scholar 

  44. Miyazaki, H, Teranishi, Y, Ota, T, “Fabrication of UV-Opaque and Visible-Transparent Composite Film.” Sol. Energy Mater. Sol. Cells, 90 (16) 2640–2646 (2006)

    Google Scholar 

  45. Salla, J, Pandey, KK, Srinivas, K, “Improvement of UV Resistance of Wood Surfaces by Using ZnO Nanoparticles.” Polym. Degrad. Stab., 97 (4) 592–596 (2012)

    Google Scholar 

  46. Lowry, MS, Hubble, DR, Wressell, AL, Vratsanos, MS, Pepe, FR, Hegedus, CR, “Assessment of UV-Permeability in Nano-ZnO Filled Coatings Via High Throughput Experimentation.” J. Coat. Technol. Res., 5 (2) 233–239 (2008)

    Google Scholar 

  47. Forsthuber, B, Grüll, G, “The Effects of HALS in the Prevention of Photo-degradation of Acrylic Clear Topcoats and Wooden Surfaces.” Polym. Degrad. Stab., 95 (5) 746–755 (2010)

    Google Scholar 

  48. Blanchard, V, Blanchet, P, “Color Stability for Wood Products During Use: Effects of Inorganic Nanoparticles.” Bioresources, 6 (2) 1219–1229 (2011)

    Google Scholar 

  49. Schaller, C, Rogez, D, Braig, A, “Organic vs Inorganic Light Stabilizers for Waterborne Clear Coats: A Fair Comparison.” J. Coat. Technol. Res., 9 (4) 433–441 (2011)

    Google Scholar 

  50. Mahltig, B, Böttcher, H, Rauch, K, Dieckmann, U, Nitsche, R, Fritz, T, “Optimized UV Protecting Coatings by Combination of Organic and Inorganic UV Absorbers.” Thin Solid Films, 485 (1–2) 108–114 (2005)

    Google Scholar 

  51. Fufa, SM, Jelle, BP, Hovde, PJ, Rørvik, PM, “Coated Wooden Claddings and the Influence of Nanoparticles on the Weathering Performance.” Prog. Org. Coat., 75 (1–2) 72–78 (2012)

    Google Scholar 

  52. Liufu, S-C, Xiao, H-N, Li, Y-P, “Thermal Analysis and Degradation Mechanism of Polyacrylate/ZnO Nanocomposites.” Polym. Degrad. Stab., 87 (1) 103–110 (2005)

    Google Scholar 

  53. Li, JH, Hong, RY, Li, MY, Li, HZ, Zheng, Y, Ding, J, “Effects of ZnO Nanoparticles on the Mechanical and Antibacterial Properties of Polyurethane Coatings.” Prog. Org. Coat., 64 (4) 504–509 (2009)

    Google Scholar 

  54. Azimi, ARN, Yahya, R, Gan, S-N, “Investigating Effect of Conventional and Nano Zinc Pigments on Air-Drying Property of Palm-Stearin-Based Alkyd Resin Paints.” Int. J. Polym. Mater., 62 (4) 199–202 (2013)

    Google Scholar 

  55. Kalendova, A, Vesely, D, Kalenda, P, “Contribution of Inorganic Pigments to the Formation of Paint Films from Oxypolymerising Drying Paints.” Pigment Resin Technol., 39 (5) 255–261 (2010)

    Google Scholar 

  56. Greenwood, PHJ, Lagnemo, H, “Alkyd-Based Coating Composition.” US Patent 20,140,039,093, 2014

  57. Vollmer, S, Evans, PD, “Performance of Clear Coatings on Modified Wood Exposed to the Weather for 2 Years in Australia.” Int. Wood Prod. J., 4 (3) 177–182 (2013)

    Google Scholar 

  58. Zou, H, Wu, S, Shen, J, “Polymer/Silica Nanocomposites: Preparation, Characterization, Properties, and Applications.” Chem. Rev., 108 (9) 3893–3957 (2008)

    Google Scholar 

  59. Fernando, R, “Nanomaterial Technology Applications in Coatings.” JCT CoatingsTech, 1 (5) 32–38 (2004)

    Google Scholar 

  60. Khudyakov, IV, Zopf, DR, Turro, NJ, “Polyurethane Nanocomposites.” Des. Monomer. Polym., 12 (4) 279–290 (2009)

    Google Scholar 

  61. Zhang, S, Yu, A, Song, X, Liu, X, “Synthesis and Characterization of Waterborne UV-Curable Polyurethane Nanocomposites Based on the Macromonomer Surface Modification of Colloidal Silica.” Prog. Org. Coat., 76 (7–8) 1032–1039 (2013)

    Google Scholar 

  62. Chen, G, Zhou, S, Gu, G, Yang, H, Wu, L, “Effects of Surface Properties of Colloidal Silica Particles on Redispersibility and Properties of Acrylic-Based Polyurethane/Silica Composites.” J. Colloid Interface Sci., 281 (2) 339–350 (2005)

    Google Scholar 

  63. Bauer, F, Mehnert, R, “UV Curable Acrylate Nanocomposites: Properties and Applications.” J. Polym. Res., 12 (6) 483–491 (2005)

    Google Scholar 

  64. Nik Salleh, NG, Sofian Alias, M, Gläsel, HJ, Mehnert, R, “High Performance Radiation Curable Hybrid Coatings.” Radiat. Phys. Chem., 84 70–73 (2013)

    Google Scholar 

  65. Kim, BS, Park, SH, Kim, BK, “Nanosilica-Reinforced UV-Cured Polyurethane Dispersion.” Colloid. Polym. Sci., 284 (9) 1067–1072 (2006)

    Google Scholar 

  66. Zhang, S, Guo, M, Chen, Z, Liu, QH, Liu, X, “Grafting Photosensitive Polyurethane onto Colloidal Silica for Use in UV-Curing Polyurethane Nanocomposites.” Colloid. Surf. A, 443 525–534 (2014)

    Google Scholar 

  67. Lahijania, YZK, Mohseni, M, Bastani, S, “Characterization of Mechanical Behavior of UV Cured Urethane Acrylate Nanocomposite Films Loaded with Silane Treated Nanosilica by the Aid of Nanoindentation and Nanoscratch Experiments.” Tribol. Int., 69 10–18 (2014)

    Google Scholar 

  68. Ghaemy, M, Bekhradnia, S, “Thermal and Photocuring of an Acrylate-Based Coating Resin Reinforced with Nanosilica Particles.” J. Coat. Technol. Res., 9 (5) 569–578 (2012)

    Google Scholar 

  69. Wu, J, Ma, G, Li, P, Ling, L, Wang, B, “Surface Modification of Nanosilica with Acrylsilane-Containing Tertiary Amine Structure and Their Effect on the Properties of UV-Curable Coating.” J. Coat. Technol. Res., 11 (3) 387–395 (2014)

    Google Scholar 

  70. Rodriguez, R, Vargas, S, Rubio, E, Pacheco, S, Estevez, M, “Abrasion Properties of Alkyd- and Acrylic-Based Polymer-Ceramic Nano-hybrid Coatings on Wood Surfaces.” Mater. Res. Innov., 10 (2) 193–206 (2006)

    Google Scholar 

  71. Rodriguez, R, Arteaga, E, Rangel, D, Salazar, R, Vargas, S, Estevez, M, “Mechanical, Chemical and Acoustic Properties of New Hybrid Ceramic-Polymer Varnishes for Musical Instruments.” J. Non-Cryst. Solids, 355 (2) 132–140 (2009)

    Google Scholar 

  72. Greenwood, P, “Nano-particle Reinforced Latex Dispersions with Modified Colloidal Silica.” JCT CoatingsTech, 5 (2) 44–51 (2008)

    Google Scholar 

  73. Chen, Y, Zhou, S, Yang, H, Wu, L, “Structure and Properties of Polyurethane/Nanosilica Composites.” J. Appl. Polym. Sci., 95 (5) 1032–1039 (2005)

    Google Scholar 

  74. Kurt, İ, Acar, I, Güçlü, G, “Preparation and Characterization of Water Reducible Alkyd Resin/Colloidal Silica Nanocomposite Coatings.” Prog. Org. Coat., 77 (5) 949–956 (2014)

    Google Scholar 

  75. Vu, C, Laferte, O, “Silica Nanoparticles in the Optimisation of Scratch and Abrasion Resistance of High Performance UV Multi-layer Coatings.” Eur. Coat. J., 06 (2006)

  76. Bauer, F, Flyunt, R, Czihal, K, Buchmeiser, MR, Langguth, H, Mehnert, R, “Nano/Micro-particle Hybrid Composites for Scratch and Abrasion Resistant Polyacrylate Coatings.” Macromol. Mater. Eng., 291 (5) 493–498 (2006)

    Google Scholar 

  77. Sow, C, Riedl, B, Blanchet, P, “UV-Waterborne Polyurethane-Acrylate Nanocomposite Coatings Containing Alumina and Silica Nanoparticles for Wood: Mechanical, Optical, and Thermal Properties Assessment.” J. Coat. Technol. Res., 8 (2) 211–221 (2010)

    Google Scholar 

  78. Choudalakis, G, Gotsis, AD, “Morphology and Gas Transport Properties of Acrylic Resin/Bentonite Nanocomposite Coatings.” Prog. Org. Coat., 77 (4) 845–852 (2014)

    Google Scholar 

  79. Liu, J, Boo, WJ, Clearfield, A, Sue, HJ, “Intercalation and Exfoliation: A Review on Morphology of Polymer Nanocomposites Reinforced by Inorganic Layer Structures.” Mater. Manuf. Process., 21 (2) 143–151 (2006). http://www.informaworld.com

    Google Scholar 

  80. Patel, HA, Somani, RS, Bajaj, HC, Jasra, RV, “Nanoclays for Polymer Nanocomposites, Paints, Inks, Greases and Cosmetics Formulations, Drug Delivery Vehicle and Waste Water Treatment.” Bull. Mater. Sci., 29 (2) 133–145 (2006)

    Google Scholar 

  81. de Paiva, LB, Morales, AR, Valenzuela Díaz, FR, “Organoclays: Properties, Preparation and Applications.” Appl. Clay Sci., 42 (1–2) 8–24 (2008)

    Google Scholar 

  82. Pique, TM, Perez, CJ, Alvarez, VA, Vazquez, A, “Water Soluble Nanocomposite Films Based on Poly(vinyl alcohol) and Chemically Modified Montmorillonites.” J. Compos. Mater., 48 (5) 545–553 (2013)

    Google Scholar 

  83. Turri, S, Alborghetti, L, Levi, M, “Formulation and Properties of a Model Two-Component Nanocomposite Coating from Organophilic Nanoclays.” J. Polym. Res., 15 (5) 365–372 (2008)

    Google Scholar 

  84. Landry, V, Riedl, B, Blanchet, P, “Alumina and Zirconia Acrylate Nanocomposites Coatings for Wood Flooring: Photocalorimetric Characterization.” Prog. Org. Coat., 61 (1) 76–82 (2008)

    Google Scholar 

  85. Landry, V, Riedl, B, Blanchet, P, “Dispersion is the Key to Performance.” Eur. Coat. J., 07 30 (2009)

    Google Scholar 

  86. Landry, V, Blanchet, P, Riedl, B, “Mechanical and Optical Properties of Clay-Based Nanocomposites Coatings for Wood Flooring.” Prog. Org. Coat., 67 (4) 381–388 (2010)

    Google Scholar 

  87. Nkeuwa, WN, Riedl, B, Landry, V, “UV-Cured Clay/Based Nanocomposite Topcoats for Wood Furniture: Part I: Morphological Study, Water Vapor Transmission Rate and Optical Clarity.” Prog. Org. Coat., 77 (1) 1–11 (2014)

    Google Scholar 

  88. Nkeuwa, WN, Riedl, B, Landry, V, “UV-Cured Clay/Based Nanocomposite Topcoats for Wood Furniture. Part II: Dynamic Viscoelastic Behavior and Effect of Relative Humidity on the Mechanical Properties.” Prog. Org. Coat., 77 (1) 12–23 (2014)

    Google Scholar 

  89. Jang, ES, Khan, SB, Seo, J, Nam, YH, Choi, WJ, Akhtar, K, Han, H, “Synthesis and Characterization of Novel UV-Curable Polyurethane–Clay Nanohybrid: Influence of Organically Modified Layered Silicates on the Properties of Polyurethane.” Prog. Org. Coat., 71 (1) 36–42 (2011)

    Google Scholar 

  90. Malucelli, G, Alongi, J, Gioffredi, E, Lazzari, M, “Thermal, Rheological, and Barrier Properties of Waterborne Acrylic Nanocomposite Coatings Based on Boehmite or Organo-modified Montmorillonite.” J. Therm. Anal. Calorim., 111 (2) 1303–1310 (2012)

    Google Scholar 

  91. Milligan, WO, McAtee, JL, “Crystal Structure of γ-AlOOH and γ-ScOOH.” J. Phys. Chem., 60 (3) 273–277 (1956)

    Google Scholar 

  92. Corcione, CE, Frigione, M, “UV-Cured Polymer-Boehmite Nanocomposite as Protective Coating for Wood Elements.” Prog. Org. Coat., 74 (4) 781–787 (2012)

    Google Scholar 

  93. Burnside, SD, Giannelis, EP, “Synthesis and Properties of New Poly(dimethylsiloxane) Nanocomposites.” Chem. Mater., 7 (9) 1597–1600 (1995)

    Google Scholar 

  94. Bourbigot, S, Le Bras, M, Duquesne, S, Rochery, M, “Recent Advances for Intumescent Polymers.” Macromol. Mater. Eng., 289 (6) 499–511 (2004)

    Google Scholar 

  95. Ribeiro, SPS, Estevão, LRM, Nascimento, RSV, “Effect of Clays on the Fire-Retardant Properties of a Polyethylenic Copolymer Containing Intumescent Formulation.” Sci. Technol. Adv. Mater., 9 (2) 024408 (2008)

    Google Scholar 

  96. Chuang, C-S, Tsai, K-C, Yang, T-H, Ko, C-H, Wang, M-K, “Effects of Adding Organo-clays for Acrylic-Based Intumescent Coating on Fire-Retardancy of Painted Thin Plywood.” Appl. Clay Sci., 53 (4) 709–715 (2011)

    Google Scholar 

  97. Hassan, MA, Kozlowski, R, Obidzinski, B, “New Fire-Protective Intumescent Coatings for Wood.” J. Appl. Polym. Sci., 110 (1) 83–90 (2008)

    Google Scholar 

  98. Chrissafis, K, Bikiaris, D, “Can Nanoparticles Really Enhance Thermal Stability of Polymers? Part I: An Overview on Thermal Decomposition of Addition Polymers.” Thermochim. Acta, 523 (1–2) 1–24 (2011)

    Google Scholar 

  99. Klijn, T, Twene, D, Dirk Emiel Paula Mestach, NB, “Stain Blocking Water Borne Coating Composition.” US Patent 20,070,213,445, 2007

  100. Siqueira, G, Bras, J, Dufresne, A, “Cellulosic Bionanocomposites: A Review of Preparation, Properties and Applications.” Polymers, 2 (4) 728–765 (2010)

    Google Scholar 

  101. Dufresne, A, “Nanocellulose: A New Ageless Bionanomaterial.” Mater. Today, 16 (6) 220–227 (2013)

    Google Scholar 

  102. Lavoine, N, Desloges, I, Dufresne, A, Bras, J, “Microfibrillated Cellulose—Its Barrier Properties and Applications in Cellulosic Materials: A Review.” Carbohydr. Polym., 90 (2) 735–764 (2012)

    Google Scholar 

  103. Xu, X, Liu, F, Jiang, L, Zhu, JY, Haagenson, D, Wiesenborn, DP, “Cellulose Nanocrystals vs. Cellulose Nanofibrils: A Comparative Study on Their Microstructures and Effects as Polymer Reinforcing Agents.” ACS Appl. Mater. Interfaces, 5 (8) 2999–3009 (2013)

    Google Scholar 

  104. Grüneberger, F, Künniger, T, Zimmermann, T, Arnold, M, “Nanofibrillated Cellulose in Wood Coatings: Mechanical Properties of Free Composite Films.” J. Mater. Sci., 49 (18) 6437–6448 (2014)

    Google Scholar 

  105. Cao, X, Dong, H, Li, CM, “New Nanocomposite Materials Reinforced with Flax Cellulose Nanocrystals in Waterborne Polyurethane.” Biomacromolecules, 8 (3) 899–904 (2007)

    Google Scholar 

  106. Wu, GM, Chen, J, Huo, SP, Liu, GF, Kong, ZW, “Thermoset Nanocomposites from Two-Component Waterborne Polyurethanes and Cellulose Whiskers.” Carbohydr. Polym., 105 207–213 (2014)

    Google Scholar 

  107. Poaty, B, Vardanyan, V, Wilczak, L, Chauve, G, Riedl, B, “Modification of Cellulose Nanocrystals as Reinforcement Derivatives for Wood Coatings.” Prog. Org. Coat., 77 (4) 813–820 (2014)

    Google Scholar 

  108. Vlad-Cristea, MS, Landry, V, Blanchet, P, Ouellet-Plamondon, C, “Nanocrystalline Cellulose as Effect Pigment in Clear Coatings for Wood.” ISRN Nanomater., 2013 1–12 (2013)

    Google Scholar 

  109. Morones, JR, Elechiguerra, JL, Camacho, A, Holt, K, Kouri, JB, Ramirez, JT, Yacaman, MJ, “The Bactericidal Effect of Silver Nanoparticles.” Nanotechnology, 16 (10) 2346–2353 (2005)

    Google Scholar 

  110. Ren, G, Hu, D, Cheng, EW, Vargas-Reus, MA, Reip, P, Allaker, RP, “Characterisation of Copper Oxide Nanoparticles for Antimicrobial Applications.” Int. J. Antimicrob. Agents, 33 (6) 587–590 (2009)

    Google Scholar 

  111. Evans, P, Matsunaga, H, Kiguchi, M, “Large-Scale Application of Nanotechnology for Wood Protection.” Nat. Nanotechnol., 3 (10) 577 (2008)

    Google Scholar 

  112. Polo, A, Diamanti, MV, Bjarnsholt, T, Hoiby, N, Villa, F, Pedeferri, MP, Cappitelli, F, “Effects of Photoactivated Titanium Dioxide Nanopowders and Coating on Planktonic and Biofilm Growth of Pseudomonas aeruginosa.” Photochem. Photobiol., 87 (6) 1387–1394 (2011)

    Google Scholar 

  113. Gladis, F, Eggert, A, Karsten, U, Schumann, R, “Prevention of Biofilm Growth on Man-Made Surfaces: Evaluation of Antialgal Activity of Two Biocides and Photocatalytic Nanoparticles.” Biofouling, 26 (1) 89–101 (2010)

    Google Scholar 

  114. Clausen, CA, Kartal, SN, Arango, RA, Green, F, 3rd, “The Role of Particle Size of Particulate Nano-zinc Oxide Wood Preservatives on Termite Mortality and Leach Resistance.” Nanoscale Res. Lett., 6 427 (2011)

    Google Scholar 

  115. Lykidis, C, Mantanis, G, Adamopoulos, S, Kalafata, K, Arabatzis, I, “Effects of Nano-sized Zinc Oxide and Zinc Borate Impregnation on Brown Rot Resistance of Black Pine (Pinus nigra L.) Wood.” Wood Mater. Sci. Eng., 8 (4) 242–244 (2013)

    Google Scholar 

  116. Mantanis, G, Terzi, E, Kartal, SN, Papadopoulos, AN, “Evaluation of Mold, Decay and Termite Resistance of Pine Wood Treated with Zinc- and Copper-Based Nanocompounds.” Int. Biodeterior. Biodegrad., 90 140–144 (2014)

    Google Scholar 

  117. Shi, X, Yuan, L, Sun, X, Chang, C, Sun, J, “Controllable Synthesis of 4ZnO B2O3·H2O Nano-/Microstructures with Different Morphologies: Influence of Hydrothermal Reaction Parameters and Formation Mechanism.” J. Phys. Chem. C, 112 (10) 3558–3567 (2008)

    Google Scholar 

  118. Shi, X, Li, B, Qin, G, Tian, S, “Mechanism of Antifungal Action of Borate Against Colletotrichum gloeosporioides Related to Mitochondrial Degradation in Spores.” Postharvest Biol. Technol., 67 138–143 (2012)

    Google Scholar 

  119. Kaiser, JP, Zuin, S, Wick, P, “Is Nanotechnology Revolutionizing the Paint and Lacquer Industry? A Critical Opinion.” Sci. Total Environ., 442 282–289 (2013)

    Google Scholar 

  120. Sondi, I, Salopek-Sondi, B, “Silver Nanoparticles as Antimicrobial Agent: A Case Study on E. coli as a Model for Gram-Negative Bacteria.” J. Colloid Interface Sci., 275 (1) 177–182 (2004)

    Google Scholar 

  121. Rusin, P, Bright, K, Gerba, C, “Rapid Reduction of Legionella pneumophila on Stainless Steel with Zeolite Coatings Containing Silver and Zinc Ions.” Lett. Appl. Microbiol., 36 (2) 69–72 (2003)

    Google Scholar 

  122. Pandey, P, Merwyn, S, Agarwal, G, Tripathi, BK, Pant, SC, “Electrochemical Synthesis of Multi-armed CuO Nanoparticles and Their Remarkable Bactericidal Potential Against Waterborne Bacteria.” J. Nanopart. Res., 14 (1) 709 (2012)

    Google Scholar 

  123. Kumar, A, Vemula, PK, Ajayan, PM, John, G, “Silver-Nanoparticle-Embedded Antimicrobial Paints Based on Vegetable Oil.” Nat. Mater., 7 (3) 236–241 (2008)

    Google Scholar 

  124. Noyce, JO, Michels, H, Keevil, CW, “Potential Use of Copper Surfaces to Reduce Survival of Epidemic Meticillin-Resistant Staphylococcus aureus in the Healthcare Environment.” J. Hosp. Infect., 63 (3) 289–297 (2006)

    Google Scholar 

  125. Wilks, SA, Michels, H, Keevil, CW, “The Survival of Escherichia coli O157 on a Range of Metal Surfaces.” Int. J. Food Microbiol., 105 (3) 445–454 (2005)

    Google Scholar 

  126. Cioffi, N, Torsi, L, Ditaranto, N, Tantillo, G, Ghibelli, L, Sabbatini, L, Bleve-Zacheo, T, D’Alessio, M, Zambonin, PG, Traversa, E, “Copper Nanoparticle/Polymer Composites with Antifungal and Bacteriostatic Properties.” Chem. Mater., 17 (21) 5255–5262 (2005)

    Google Scholar 

  127. Wei, Y, Chen, S, Kowalczyk, B, Huda, S, Gray, TP, Grzybowski, BA, “Synthesis of Stable, Low-Dispersity Copper Nanoparticles and Nanorods and Their Antifungal and Catalytic Properties.” J. Phys. Chem. C, 114 (37) 15612–15616 (2010)

    Google Scholar 

  128. Esteban-Tejeda, L, Malpartida, F, Esteban-Cubillo, A, Pecharroman, C, Moya, JS, “Antibacterial and Antifungal Activity of a Soda-Lime Glass Containing Copper Nanoparticles.” Nanotechnology, 20 (50) 505701 (2009)

    Google Scholar 

  129. Park, JK, Choy, YB, Oh, JM, Kim, JY, Hwang, SJ, Choy, JH, “Controlled Release of Donepezil Intercalated in Smectite Clays.” Int. J. Pharm., 359 (1–2) 198–204 (2008)

    Google Scholar 

  130. Choy, J, Choi, S, Oh, J, Park, T, “Clay Minerals and Layered Double Hydroxides for Novel Biological Applications.” Appl. Clay Sci., 36 (1–3) 122–132 (2007)

    Google Scholar 

  131. Malachová, K, Praus, P, Rybková, Z, Kozák, O, “Antibacterial and Antifungal Activities of Silver, Copper and Zinc Montmorillonites.” Appl. Clay Sci., 53 (4) 642–645 (2011)

    Google Scholar 

  132. Guo, Z, Liu, W, Su, BL, “Superhydrophobic Surfaces: From Natural to Biomimetic to Functional.” J. Colloid Interface Sci., 353 (2) 335–355 (2011)

    Google Scholar 

  133. Xue, Z, Liu, M, Jiang, L, “Recent Developments in Polymeric Superoleophobic Surfaces.” J. Polym. Sci. B, 50 (17) 1209–1224 (2012)

    Google Scholar 

  134. Shupe, T, Piao, C, Lucas, C, “The Termiticidal Properties of Superhydrophobic Wood Surfaces Treated with ZnO Nanorods.” Eur. J. Wood Wood Prod., 70 (4) 531–535 (2011)

    Google Scholar 

  135. Hsieh, C-T, Chang, B-S, Lin, J-Y, “Improvement of Water and Oil Repellency on Wood Substrates by Using Fluorinated Silica Nanocoating.” Appl. Surf. Sci., 257 (18) 7997–8002 (2011)

    Google Scholar 

  136. Manoudis, PN, Karapanagiotis, I, Tsakalof, A, Zuburtikudis, I, Panayiotou, C, “Superhydrophobic Composite Films Produced on Various Substrates.” Langmuir, 24 (19) 11225–11232 (2008)

    Google Scholar 

  137. Wang, C, Piao, C, “From Hydrophilicity to Hydrophobicity: A Critical Review—Part II: Hydrophobic Conversion.” Wood Fiber Sci., 43 (1) 41–56 (2011)

    Google Scholar 

  138. Steele, A, Bayer, I, Loth, E, “Adhesion Strength and Superhydrophobicity of Polyurethane/Organoclay Nanocomposite Coatings.” J. Appl. Polym. Sci., 125 (S1) E445–E452 (2012)

    Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the Danish High Technology Foundation for the financial support through “Superior Bio based Coating System for Exterior Wood Applications” project, File Number 056-2011-3. We would also like to acknowledge COST Action FP 1006 “Bringing new functions to wood through surface modification” for supporting a Short-Term Scientific Mission (STSM) for one author, Miroslav Nikolic, and to thank Wolfgang Gindl-Altmutter and Stefan Veigel for the help and knowledge gained during the STSM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslav Nikolic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolic, M., Lawther, J.M. & Sanadi, A.R. Use of nanofillers in wood coatings: a scientific review. J Coat Technol Res 12, 445–461 (2015). https://doi.org/10.1007/s11998-015-9659-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-015-9659-2

Keywords

Navigation